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We present a calculation of the modulation in the local density of electronic states caused by an impurity in
graphene in the presence of an external magnetic field. We focus on the spatial Fourier transform �FT� of this
modulation around the impurity. The FT due to the low-energy quasiparticles is found to be nonzero over the
reciprocal lattice �with a three-site basis� corresponding to graphene. At these lattice spots the FT exhibits
well-defined features at wave vectors that are multiples of the inverse cyclotron orbit diameter and is cut off at
the wave vector corresponding to the energy of observation. Scanning tunneling spectroscopy on graphene and
the energy-resolved FT fingerprint obtained therefrom may be used to observe the quasiparticle interference of
Dirac particles in graphene in the presence of magnetic field.
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Graphene is a monatomic layer of carbon atoms arranged
in a hexagonal lattice. It was first isolated by the mechanical
exfoliation of graphite in 2004.2 The electronic band struc-
ture of graphene is characterized by two points K and K� �at
wave vectors �K� �Ref. 3� in the reciprocal space where the
valence and conduction bands touch each other. The gapless
low-energy excitations that exist at those points can be de-
scribed by theories of massless Dirac quasiparticles with op-
posite chirality in �2+1� dimensions.4 An interesting conse-
quence of such a band structure is the formation of Landau
levels �in a perpendicular magnetic field� whose energies
vary as the square root of the Landau level index as well as
that of the magnitude of the perpendicular magnetic field.5,6

The unconventional Quantum Hall effect seen in transport
measurements in graphene is another profound physical con-
sequence of the Dirac nature of these quasiparticles.7,8 To
this date, the only evidence of the Landau quantization of
Dirac particles has come from bulk transport measurements.
Alternately, one might look at the evidence from Landau
level spectroscopy using the scanning tunneling microscope
�STM�. In addition to the real-space imaging of Landau lev-
els local spectroscopic tools can be a very sensitive probe of
quasiparticle interference �QPI� that often reveals details
about the underlying band structure and the quasiparticle
wave functions.9,10 Applications of these ideas to graphene
are natural and promising. Experiments are currently in
progress that probe the signatures of QPI in graphene in the
presence of a magnetic field. In this paper we focus on QPI
in magnetic field in graphene. We use the theory of nonin-
teracting Dirac quasiparticles in a magnetic field and calcu-
late the change in the electronic LDOS in response to weak
impurities. We find that �i� the local density of states �LDOS�
FT displays characteristic rings whose size is set by the in-
verse cyclotron diameter dcyc—indeed, in the limit of a
strong magnetic field when effects of disorder and line
broadening are secondary the main feature of quasiparticle
motion will be the cyclotron orbits—and �ii� these rings will
form a lattice in Fourier space that is the same as the
graphene reciprocal lattice �with a three-site basis�. Also, de-

pending on the detailed impurity potential structure this Fou-
rier transform �FT� could have additional angular depen-
dence in k space determined by off-diagonal �sublattice
mixing terms� in impurity scattering matrix. These ringlike
signatures could be observed in STM experiments.

In this work we have followed the lattice-related conven-
tions used in Ref. 3. The hamiltonian near the K� point is
related to that near the K point by a parity transformation of
the lattice: H�−K+k�=�xH�K−k��x. Since the low-energy
theory describing free excitations near the K /K� points obey
a �2+1�-dimensional Dirac theory,4,5 we can again use the
parity operator �z for the dirac fields within a given valley to
relate the stationary eigenstates of and the contributions to
the propagator/Green’s function from the two valleys
�modulo the e�iK.r /e�2iK.r factors; these are expressed as
2�2 matrices in sublattice space below—spin is ignored�,

�k,s
−K � i�y�k,s

K ,

G−K = �yGK�y
† � − �yGK�y . �1�

The total low-energy electronic Green’s function will finally
be given by

G = GK + G−K. �2�

When a finite perpendicular magnetic field Bẑ is present, in a
convenient gauge choice the energy eigenstates at the K
point are given by �for B�0�

�n,k
K �r� =

eikxeiK.r

��nLx
�− �n	�n�−1�y − k�2�

	�n��y − k�2� � , �3�

where �n=sgn�n��1−
n0�, �=�� / �eB�, �n=2−
n,0, �c

=�2v /�, En,k=�n
��n���c, and n�Z. The 	n’s are the ortho-

normal eigenfunctions of the one-dimensional simple har-
monic oscillator11 �take 	−1�0�. The k’s are consistent with
periodic boundary conditions in the x direction. Since the
SHO eigenfunctions need to be confined inside the sample,
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we end up with a degeneracy of N=LxLy / �2�2� per Landau
level.

The Green’s function may be calculated as

GK�r�,r,z� = �
n,k

�n,k
K �r���n,k

K†�r�
z − En,k

=
eiK.�

2�2�
n

e−�2/4�2	−i��y+y��/2


�n�z − En�

�� �n
2L�n�−1 i�n

�

�2�n��
e−i�L�n�−1

1

i�n
�

�2�n��
ei�L�n�−1

1 L�n� �
�

eiK.�

2�2�
n

e−�2/4�2	−i��y+y��/2


�n�z − En�
Mn

K���

� e	−i��y+y��/2
NK��,z� , �4�

where � and � are the modulus and the argument, respec-
tively of the complex number �= �x�−x�+ i�y�−y� and �
= �x�−x ,y�−y�; the argument of the �associated� Laguerre
polynomials, denoted by L, is �2

2�2 and we have defined the
matrices M and N for later reference.

We note here that we have not found this convenient el-
ementary result in the literature to this date. The K� point
eigenfunctions as well as the Green’s functions are related to
those at the K point by the aforesaid relations 	Eq. �1�
.

It is instructive to compare the zero field and finite field
free electronic Green’s functions. A comparative plot of the
angular average of one of their components is shown in Fig.
1, plotted against the spatial separation as a fraction of the
cyclotron diameter dcyc=2�E� / �evB�=2�2nLL�B.

We now consider the case when an impurity potential

V�r� 	whose spatial Fourier transform is given by Ṽ�q�
 is
present in graphene. We consider the general form of V�r� in
what follows; i.e., V�r� is a general hermitian 2�2 matrix
function of r 	V�r�=V†�r�
.

STMs give a signal corresponding to the local value of the
spectral function.12 We can use the Green’s function derived
above to obtain the spatial FT of the change in the LDOS
�given by the change in the spectral function� to the linear
order in the impurity potential strength as follows:


A�r,��

= − 2 Im Tr� dr�G�r,r�,� + i��V�r��G�r�,r,� + i���
⇒ 
Ã�k,�� = − 2 Im Tr	X̃�k,� + i��Ṽ�k�
 . �5�

In the above, X̃�k ,z� is the Fourier transform �w.r.t. �� of

X��,z� = N�− �,z�N��,z�

= NK�− �,z�NK��,z� + N−K�− �,z�N−K��,z�

+ NK�− �,z�N−K��,z� + N−K�− �,z�NK��,z� .

�6�

From Eqs. �3� and �4� we see that N�K�� ,z� possess the
prefactors e�iK.�. We thus deduce that scattering by the im-
purity potential V will yield spatial LDOS oscillations
around the wave vectors 0 	terms in the first row of Eq. �6�

and �2K 	second row of Eq. �6�
 as well as those joined to
these by reciprocal-lattice vectors, due to intra and interval-
ley scattering, respectively. The resulting lattice is identical
to the reciprocal lattice �with a three-site basis� 	see Fig.
2�C�
.

Since scattering around the zero wave vector can also
arise from many slowly varying unknown environmental po-
tentials, we expect that LDOS oscillations around the wave
vectors �2K near isolated atomically sharp defects will bet-
ter reproduce the LDOS profiles that our theory predicts and
for this reason we shall focus on explaining how to calculate
the features around �2K. To do this we need to isolate in Eq.
�5� the part due to intervalley scattering, which amounts to
using the terms in the last line of Eq. �6� that we shall refer
to as e�2iK.�X�, respectively.

The Landau levels have been assumed to be sharp in the
treatment so far and so direct evaluation of Eq. �4� and the
subsequent calculations will yield a sum of delta functions in
energy. To be able to resolve the spatial functional forms and
to reflect realistic experimental conditions we can either as-
sume that the Landau levels are broadened or that the STM
has a finite detection window. We have chosen to take a
Gaussian detection window with width �,13


Ã�k,��obs �� d��
e−��� − ��2/2�2

�2�

Ã�k,��� . �7�

It is now possible to write down the LDOS as a series ex-
pansion in �

�E , where �E is of the order of the difference
between the energy levels that are incorporated into the cal-
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FIG. 1. Comparison of the Green’s functions when B=0 �dashed
gray� and B�0 �continuous black�, at an energy Eobs corresponding
to the Landau level index nLL=8. The distance propagated is mea-
sured in units of the classical cyclotron orbit diameter dcyc

=2�E� / �evB�=2�2nLL�B. At small distances these oscillate together
at the wave vector Eobs / ��v� but after nLL /2 oscillations the Green’s
function for B�0 decays exponentially since the particle “turns” in
its cyclotron orbit and cannot propagate further than dcyc.
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culation. To see this, we note that upon substituting expres-
sion �4� of the Green’s function we come across sums of the
following structure 	g represents the Gaussian in Eq. �7�; fmn
is proportional to Fourier transforms of the form
�d2q Tr	M̃m

�K�q−k�M̃n
�K�q�Ṽ��2K+k�
 that satisfy the con-

dition Im fmn=−Im fnm when V is invariant under spatial
inversion
,

Im � d��g��� − ���
m,n

fmn

��� − �m + i����� − �n + i��

=
Im fmn=−Im fnm

 �
m�n

Re fmn
g��n − �� − g��m − ��

�m − �n

− 2�
n

fnng���n − ��

= �
n

g��n − �� �
m��n�

Re�fmn + fnm�
�m − �n

− 2�
n

fnng���n − �� . �8�

The “diagonal” term involving fnn above �that corresponds to
the particle ejected by the STM tip remaining in the same
Landau level on both legs of its journey before and after
scattering off the defect� gives the main contribution and the
other members in the sum are suppressed by the aforemen-
tioned factors of �

�E . The numerical calculations that we sub-
sequently perform are taking only the first few terms of this
series into account and work well for large magnetic fields
when �E��B��.

From Eq. �5� and subsequent discussions we find that

we can write 
Ãobs in the form 
Ã��2K+k ,��obs

=Tr	D̃��k ,��Ṽ��2K+k�
, where D�= i�X�−X�
† �. We can

make the following general comments regarding the func-

tional dependence of the components of D̃��k ,�� as a func-
tion of k. Let nLL��� denote the Landau level index corre-
sponding to the Landau level nearest to the energy of
observation Eobs=��. It is thus the integer closest to
sgn ��� /�c�2. The “diagonal” term in Eq. �8� that is the
most important contribution then corresponds to n=nLL���.
From the definition of D and using Eq. �4� we see that D
consists of products of two oscillatory functions �such as
those shown in Fig. 1�. We thus expect spatial oscillation
scales set by the wave vectors 2 / �2�2�nLL��� and twice of
��� /v to appear in D�r�. Our calculation confirms this expec-

tation: we find that D̃�k� displays a set of about �nLL� oscil-
latory peaks starting at k=0 and separated by a period �k
�see below�; it then decays rapidly after a maximum wave
vector kmax, where

�k �
2

�
� 2

�nLL�
=

8

dcyc
, kmax =

2���
v

� 2�2
�nLL�

�
. �9�

The off-diagonal elements in Eq. �4� possess an angular de-

pendence and for this reason D̃��2K+k� exhibits sinusoidal
oscillations in �k and 2�k for a given k, with �k being the
orientation angle of k with respect to the direction of K. We
find that when intravalley scattering is considered, only the
off-diagonal components of V give rise to �k-oscillations
while in the case of intervalley scattering, the diagonal com-
ponents of V can, in addition, lead to 2�k oscillations.

k=0K' K

K

(L1)

(L2)

(R1)

(R2)

(C)

B = 0 B � 0 (nLL= 8)

FIG. 2. �Color online� Comparison of the angular averages of the spatial FT and power spectrum of LDOS modulations around a

short-ranged impurity potential Ṽ�k�� I, for the cases when the magnetic field is zero and when it is nonzero �and the nearest Landau level
has an index nLL=8�. The center figure �C� shows part of the reciprocal lattice �with a three-site basis� formed by regions in k-space where
the Fourier transform may be nonzero. The green/light gray and red/gray “spots” arise from K→K� scattering and vice versa respectively.
The gray spots arise from intravalley scattering. One green/light gray region is enlarged to show the angle-averaged power spectrum on a
scale where the oscillations are better resolved 	the density maps have edges of length 6Eobs / ��v�
, for the B�0 �R1� and B=0 �L1� cases.
Below these are the corresponding variation of the Fourier transforms with k—the deviation from the K-point, for the B�0 	R2—see Eq.
�9� for parameters
 and B=0 �L2� cases. All plots were made using MATHEMATICA �Ref. 1�.
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The results of our calculations have been summarized in
Fig. 2. The FT of the LDOS oscillations is plotted near a
short-ranged diagonal impurity potential Ṽ�k�� I �the 2�2
identity matrix�. Given any other nontrivial form of this po-
tential, the LDOS modulations may be found straightfor-
wardly from the above prescription.

It is worth noting here that we have only quantified the
oscillation parameters that may be observed in the spatial
Fourier transform and not the power spectrum, examples of
which are, however, also shown in Fig. 2 �L1 and R1�. Upon
squaring the FT modulus to obtain the power spectrum the
result could have twice as many oscillations. This needs to
be kept in mind when comparing the foregoing results with
experimental signatures.

In conclusion, in this work we have laid out the frame-
work for calculating the LDOS modifications around an im-
purity in graphene in the presence of a strong magnetic field.
We use the linearly dispersing chiral quasiparticle theory. To
calculate the QPI we have derived the graphene Green’s
function in a magnetic field. There are two distinct
regimes—in case of a strong field we have a situation of
QHE while in the opposite case of a weak field the level
broadening � �due to lock-in modulation of STM voltage or
due to impurity scattering, etc.� will be larger than the Lan-

dau level splitting �E�B1/2. We considered the case of a
strong magnetic field. To this end we established a series
expansion in � /�E. In this limit our approach can be used to
obtain the LDOS oscillations for any impurity potential.
While the exact form of these oscillations vary by impurity
type, we have identified a few important characteristics that
may be observed in the FT of these oscillations—impurity-
induced LDOS modulations in a magnetic field thus offers an
alternative avenue for Landau level spectroscopy using local
probes. We note that we recently became aware of the
preprint14 where similar questions have been addressed.
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